About Us Contact Us

n Factorial Calculator

Factorial Calculator is an online tool to calculate factorial of a number provided. In mathematics, the factorial of a non-negative integer n (denoted by n! and pronounced as n factorial), is the product of all positive integers less than or equal to n.

Or

Definition of Factorial / What is Factorial Value

For positive integer n, the product of all integers in the range 1 <=n

n! means=n (n-1) (n-2) (n-3) . . . (3) (2) (1)


Factorial Calculator

Oxford Dictionary Definition of Factorial

The product of an integer and all the integers below it.

By definition, the factorial of 0 is 1

For Example: Factorial of 5! is 1 . 2 . 3 . 4 . 5=120

Factorial Table of numbers from 1 to 50 value

1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
21!=51090942171709440000
22!=1124000727777607680000
23!=25852016738884976640000
24!=620448401733239439360000
25!=15511210043330985984000000
26!=403291461126605635584000000
27!=10888869450418352160768000000
28!=304888344611713860501504000000
29!=8841761993739701954543616000000
30!=265252859812191058636308480000000
31!=8222838654177922817725562880000000
32!=263130836933693530167218012160000000
33!=8683317618811886495518194401280000000
34!=295232799039604140847618609643520000000
35!=10333147966386144929666651337523200000000
36!=371993326789901217467999448150835200000000
37!=13763753091226345046315979581580902400000000
38!=523022617466601111760007224100074291200000000
39!=20397882081197443358640281739902897356800000000
40!=815915283247897734345611269596115894272000000000
41!=33452526613163807108170062053440751665152000000000
42!=1405006117752879898543142606244511569936384000000000
43!=60415263063373835637355132068513997507264512000000000
44!=2658271574788448768043625811014615890319638528000000000
45!=119622220865480194561963161495657715064383733760000000000
46!=5502622159812088949850305428800254892961651752960000000000
47!=258623241511168180642964355153611979969197632389120000000000
48!=12413915592536072670862289047373375038521486354677760000000000
49!=608281864034267560872252163321295376887552831379210240000000000
50!=30414093201713378043612608166064768844377641568960512000000000000

Applications of Factorial

Applications of factorials include combinatorics, number theory, discrete mathematics, and calculus.

FAQ's on Factorial

Question: Can we have factorials for numbers like −1, −2, etc?

Answer: No, negative integer factorials are undefined.

Question: Can we have factorials for numbers like 0.5 or −3.217?

Answer: Yes we can. But for this you need to study Gamma Functions.