﻿ Factorial Calculator | Calculate Factorial of a Number

# Factorial Calculator

Factorial Calculator is an online tool to calculate factorial of a number n!. In mathematics, the factorial of a positive number n (denoted by n! and pronounced as n factorial), is the product of all positive integers less than or equal to n.

## What is a Factorial ?

A factorial is a function that multiplies a number by every number less than it. Simply we can say, to find the number of way “n” objects can be arranged. For positive integer n, the product of all integers in the range 1 <=n

n! means=n (n-1) (n-2) (n-3) . . . (3) (2) (1)

### Examples

0 factorial is a definition: 0! = 1. There is exactly 1 way to arrange 0 objects

2 factorial is 2! = 2 x 1 = 2. There are 2 different ways to arrange the numbers 1 through 2. {1,2} and {2,1}.

3 factorial is 3! = 3 x 2 x 1 = 6. There are 24 different ways to arrange the numbers 1 through 3. {1,2,3}, {1,3, 2}, {3, 2, 1}, {3, 1, 2}, {2, 1, 3}, {2, 3, 1}

4 factorial is 4! = 4 x 3 x 2 x 1 = 24. There are 24 different ways to arrange the numbers 1 through 4. {1,2,3,4}, {2,1,3,4}, {2,3,1,4}, {2,3,4,1}, {1,3,2,4}, etc.

5 factorial is 5! = 5 x 4 x 3 x 2 x 1 = 120 ### Oxford Dictionary Definition of Factorial

The product of an integer and all the integers below it.

By definition, the factorial of 0 is 1

For Example: Factorial of 5! is 1 . 2 . 3 . 4 . 5=120

### Factorial Table of numbers from 1 to 50 value

 1!=1 2!=2 3!=6 4!=24 5!=120 6!=720 7!=5040 8!=40320 9!=362880 10!=3628800 11!=39916800 12!=479001600 13!=6227020800 14!=87178291200 15!=1307674368000 16!=20922789888000 17!=355687428096000 18!=6402373705728000 19!=121645100408832000 20!=2432902008176640000 21!=51090942171709440000 22!=1124000727777607680000 23!=25852016738884976640000 24!=620448401733239439360000 25!=15511210043330985984000000 26!=403291461126605635584000000 27!=10888869450418352160768000000 28!=304888344611713860501504000000 29!=8841761993739701954543616000000 30!=265252859812191058636308480000000 31!=8222838654177922817725562880000000 32!=263130836933693530167218012160000000 33!=8683317618811886495518194401280000000 34!=295232799039604140847618609643520000000 35!=10333147966386144929666651337523200000000 36!=371993326789901217467999448150835200000000 37!=13763753091226345046315979581580902400000000 38!=523022617466601111760007224100074291200000000 39!=20397882081197443358640281739902897356800000000 40!=815915283247897734345611269596115894272000000000 41!=33452526613163807108170062053440751665152000000000 42!=1405006117752879898543142606244511569936384000000000 43!=60415263063373835637355132068513997507264512000000000 44!=2658271574788448768043625811014615890319638528000000000 45!=119622220865480194561963161495657715064383733760000000000 46!=5502622159812088949850305428800254892961651752960000000000 47!=258623241511168180642964355153611979969197632389120000000000 48!=12413915592536072670862289047373375038521486354677760000000000 49!=608281864034267560872252163321295376887552831379210240000000000 50!=30414093201713378043612608166064768844377641568960512000000000000

### Applications of Factorial

Applications of factorials include combinatorics, number theory, discrete mathematics, and calculus.

#### FAQs

Question: Can we have factorials for numbers like −1, −2, etc?

Answer: No, negative integer factorials are undefined.

Question: Can we have factorials for numbers like 0.5 or −3.217?

Answer: Yes we can. But for this you need to study Gamma Functions.